论文标题
有界域中两个 - 相流体模型的全局时间动力学
Global-in-time dynamics of the two--phase fluid model in a bounded domain
论文作者
论文摘要
在这项工作中,我们研究了有界域中两相流体模型的强溶液的全球存在和大型行为。该模型由等温EULER方程和等等电压可压缩Navier - stokes方程,并通过阻力力耦合。它是在[13 [来自动力流体模型的[13]中得出的,该模型描述了受局部比分力和浸入可压缩粘性液体中的布朗尼噪声的动力学。对于该系统,我们扩展了[13]中开发的强大解决方案的局部存在理论,以获取系统的强大解决方案。此外,我们使用与系统相关的Lyapunov功能来获得全球经典解决方案的大型行为估计。
In this work, we study the global existence of strong solutions and large-time behavior of a two-phase fluid model in a bounded domain. The model consists of the isothermal Euler equations and the isentropic compressible Navier--Stokes equations, coupled via the drag force. It was derived in [13[ from a kinetic-fluid model describing the dynamics of particles subject to local alignment force and Brownian noises immersed in a compressible viscous fluid. For this system, we extend the local existence theory for strong solutions developed in [13] to obtain the global existence of strong solutions to the system. Moreover, we use the Lyapunov functional associated with the system to get large-time behavior estimates for global classical solutions.