论文标题
通过四维带电的爱因斯坦 - 加斯 - 鲍尼特黑洞的带电巨大颗粒的挠度
Deflection of charged massive particles by a four-dimensional charged Einstein-Gauss-Bonnet black hole
论文作者
论文摘要
基于Jacobi公制方法,本文通过新型的四维带电的Einstein-Gauss-Bonnet黑洞研究了带电的大粒子的偏转。我们专注于弱场近似,并考虑具有有限距离效应的偏转角。为此,我们使用一种几何和拓扑方法,该方法是将高斯河网定理应用于雅各比空间来计算偏转角。我们发现,偏转角包含纯重力贡献$Δ_g$,纯静电$Δ_C$和引力 - 电压耦合项$δ__{gc} $。我们还表明,使用GB定理的Jacobi Metric方法还可以计算静电贡献$Δ_C$,以在Minkowski Flat Spacetime背景下进行电荷。我们发现,如果高斯 - 骨耦合常数$α$为负(正),则挠度角会增加(减小)。此外,分析了BH电荷,颗粒电荷与质量比和粒子速度对挠度角的影响。
Based on the Jacobi metric method, this paper studies the deflection of a charged massive particle by a novel four-dimensional charged Einstein-Gauss-Bonnet black hole. We focus on the weak field approximation and consider the deflection angle with finite distance effects. To this end, we use a geometric and topological method, which is to apply the Gauss-Bonnet theorem to the Jacobi space to calculate the deflection angle. We find that the deflection angle contains a pure gravitational contribution $δ_g$, a pure electrostatic $δ_c$ and a gravitational-electrostatic coupling term $δ_{gc}$. We also show that the electrostatic contribution $δ_c$ can also be computed by the Jacobi metric method using the GB theorem to a charge in a Minkowski flat spacetime background. We find that the deflection angle increases(decreases) if the Gauss-Bonnet coupling constant $α$ is negative(positive). Furthermore, the effects of the BH charge, the particle charge-to-mass ratio and the particle velocity on the deflection angle are analyzed.