论文标题

二维流形的不连续矢量场的限制集

Limit sets of discontinuous vector fields on two-dimensional manifolds

论文作者

Euzébio, Rodrigo D., Jucá, Joaby S.

论文摘要

在本文中,研究了不连续矢量场轨迹的渐近行为。矢量场是在二维Riemannian歧管$ M $上定义的,并假定在某些合适的紧凑型套装$ k $ $ m $的轨迹上限制轨迹。全局轨迹的行为进行了充分的分析,并将其极限集分类。观察到具有非空内部的极限集的存在。此外,在$ M $上允许使用所谓的滑动运动。结果考虑了可能的限制集列表,以及非持续动力学的存在以及无确定性混乱的存在。本文还提供了一些拟合主要定理假设的系统的示例和类别。

In this paper the asymptotic behavior of trajectories of discontinuous vector fields is studied. The vector fields are defined on a two-dimensional Riemannian manifold $M$ and the confinement of trajectories on some suitable compact set $K$ of $M$ is assumed. The behavior of the global trajectories is fully analyzed and their limit sets are classified. The presence of limit sets having non-empty interior is observed. Moreover, the existence of the so called sliding motion is allowed on $M$. The results contemplate a list of possible limit sets as well the existence of non-recurrent dynamics and the presence of nondeterministic chaos. Some examples and classes of systems fitting the hypotheses of the main theorems are also provided in the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源