论文标题
在完整的梯度稳定的Ricci孤子中,带有消失的d-tensor
On Complete Gradient Steady Ricci Solitons with Vanishing D-tensor
论文作者
论文摘要
在本文中,我们扩展了Cao-chen [9]在Bach-Flat梯度RICCI Solitons上的工作,以对$ n $ diperonional分类($ n \ ge 5 $)完整的$ D $ -D $ -FLAT梯度稳定稳定Ricci Solitons。更确切地说,我们证明,任何$ n $ dimensional的完整渐变梯度稳定稳定的Ricci Soliton,带有消失的$ D $ -TENSOR是Ricci-flat,或者是Bryant Soliton的等值线。此外,证明还扩展到缩小案例和扩展的情况。
In this paper, we extend the work of Cao-Chen [9] on Bach-flat gradient Ricci solitons to classify $n$-dimensional ($n\ge 5$) complete $D$-flat gradient steady Ricci solitons. More precisely, we prove that any $n$-dimensional complete noncompact gradient steady Ricci soliton with vanishing $D$-tensor is either Ricci-flat, or isometric to the Bryant soliton. Furthermore, the proof extends to the shrinking case and the expanding case as well.