论文标题
由石 - 孔缺陷引起的超一样式五边形2D材料的拓扑转换
Topological Transformations in Hyperuniform Pentagonal 2D Materials Induced by Stone-Wales Defects
论文作者
论文摘要
我们发现了两种不同的拓扑途径,五边形开罗瓷砖(P5)是单层$ ab_2 $黄铁矿材料的结构模型,分别转化为结晶的菱形 - 甲状腺库(C46)瓷砖和随机的菱形 - 铅甲状腺甲状酸酯(R456)瓷砖(R456)的瓷砖,通过持续的插入式(SWILEDICE)(SWILEDICE)(SW)。我们发现这些拓扑转换受到相邻$ b $ - $ b $债券之间的方向相关性的控制,并表现出(反)铁磁与两态iSing系统中顺磁过渡的现象学类比。与六边形2D材料(例如石墨烯)中的SW缺陷(引起扭曲)不同,五边形2D材料中的缺陷保留了P5平铺基本细胞的形状和对称性,并与最小的能源成本相关,使中间R456 R456在室温下可实现的固定型固定型在室温下。此外,沿这两种途径的中间结构既不是晶体,也不是准晶体,但是这些随机的瓷砖可以保留P5或C46晶体的超均匀性(即,无限波长的归一化密度波动完全被完全抑制),并且可以被视为2D类似的Barlow Barlow Backins在三层中的2D类似物。所得的2D材料具有金属样电子性能,使它们具有有希望的候选者,可以用半导体的P5材料形成schottky屏障。
We discover two distinct topological pathways through which the pentagonal Cairo tiling (P5), a structural model for single-layer $AB_2$ pyrite materials, respectively transforms into a crystalline rhombus-hexagon (C46) tiling and random rhombus-pentagon-hexagon (R456) tilings, by continuously introducing the Stone-Wales (SW) topological defects. We find these topological transformations are controlled by the orientation correlations among neighboring $B$-$B$ bonds, and exhibit a phenomenological analogy of the (anti)ferromagnetic to paramagnetic transition in two-state Ising systems. Unlike the SW defects in hexagonal 2D materials such as graphene, which cause distortions, the defects in pentagonal 2D materials preserve the shape and symmetry of the fundamental cell of P5 tiling and are associated with a minimal energy cost, making the intermediate R456 tilings realizable metastable states at room temperature. Moreover, the intermediate structures along the two pathways are neither crystals nor quasicrystals, and yet these random tilings preserve hyperuniformity of the P5 or C46 crystal (i.e., the infinite-wavelength normalized density fluctuations are completely suppressed), and can be viewed as 2D analogs of disordered Barlow packings in three dimensions. The resulting 2D materials possess metal-like electronic properties, making them promising candidates for forming Schottky barriers with the semiconducting P5 material.