论文标题
非自主和随机线性动力学系统的角度值:第一部分 - 基本面
Angular values of nonautonomous and random linear dynamical systems: Part I -- Fundamentals
论文作者
论文摘要
我们引入了确定性线性差方程和随机线性共生的角度值的概念。我们在非自主或随机线性动力学下进化时测量固定维的子空间之间的主要角度。重点是这些主角度的长期平均值,我们称之为角值:我们证明了不同类型的角度值之间的关系,并证明它们在随机动力学系统中的存在。对于二维系统中的一维子空间,如果矩阵具有正确定性,并且不超过$ \ \fracπ{2} $,则角度值与定向循环圆的同态同态的经典旋转编号一致。因为我们对角值的概念通过查看子空间而不是向量忽略方向,所以我们的结果适用于任何维度的动态系统和任意维度的子空间。本文的第二部分更深入地研究了自主情况的理论。我们探索与(广义)特征空间的关系,为角值提供一些明确的公式,并为通过Schur分解计算角值的一般数值算法。
We introduce the notion of angular values for deterministic linear difference equations and random linear cocycles. We measure the principal angles between subspaces of fixed dimension as they evolve under nonautonomous or random linear dynamics. The focus is on long-term averages of these principal angles, which we call angular values: we demonstrate relationships between different types of angular values and prove their existence for random dynamical systems. For one-dimensional subspaces in two-dimensional systems our angular values agree with the classical theory of rotation numbers for orientation-preserving circle homeomorphisms if the matrix has positive determinant and does not rotate vectors by more than $\fracπ{2}$. Because our notion of angular values ignores orientation by looking at subspaces rather than vectors, our results apply to dynamical systems of any dimension and to subspaces of arbitrary dimension. The second part of the paper delves deeper into the theory of the autonomous case. We explore the relation to (generalized) eigenspaces, provide some explicit formulas for angular values, and set up a general numerical algorithm for computing angular values via Schur decompositions.