论文标题
从Schwinger-keldysh全息图中电荷扩散的所有有效措施
All order effective action for charge diffusion from Schwinger-Keldysh holography
论文作者
论文摘要
在Schwinger-keldysh封闭时间路径偶双重的全息模型中,在派生型扩展中的所有订单中,都会将保守$ U(1)$电荷扩散的有效动作得出。开发了一种系统的方法来解决schwarzschild-ads $ _5 $黑色brane几何形状中5D Maxwell方程的解决方案。随机电荷电流的构型关系显示出由热波动(彩色噪声)引起的项。所有运输系数函数参数为有效作用和组成关系的参数均在流体动力扩展中进行分析计算,然后在数值上用于有限的动量。
An effective action for diffusion of a conserved $U(1)$ charge is derived to all orders in the derivative expansion within a holographic model dual to the Schwinger-Keldysh closed time path. A systematic approach to solution of the 5D Maxwell equations in a doubled Schwarzschild-AdS$_5$ black brane geometry is developed. Constitutive relation for the stochastic charge current is shown to have a term induced by thermal fluctuations (coloured noise). All transport coefficient functions parameterising the effective action and constitutive relations are computed analytically in the hydrodynamic expansion, and then numerically for finite momenta.