论文标题

主动感知基于注意力的计划

Attention-Based Planning with Active Perception

论文作者

Ma, Haoxiang, Fu, Jie

论文摘要

注意控制是人类选择与当前任务相关的信息的关键认知能力。本文开发了一种注意力的计算模型和一种基于注意力的概率计划的算法。在基于注意力的计划中,机器人决定采用不同的注意力模式。注意模式对应于机器人监视的状态变量的子集。通过在不同的注意模式之间切换,机器人会积极地感知与任务相关的信息,以降低信息获取和处理的成本,同时实现近乎最佳的任务绩效。尽管基于注意力的主动感知不可避免地会引入部分观察结果,但部分可观察到的MDP公式使问题计算的问题昂贵。取而代之的是,我们提出的方法采用了一个层次规划框架,在该框架中,机器人确定要注意什么以及在转移到其他信息源之前应持续多长时间的注意力。在注意阶段的注意力阶段,机器人进行了一个子政策,该子政策是根据当前注意力的原始MDP抽象计算出的。我们使用一个示例,其中任务是捕获随机网格世界中的一组入侵者。实验结果表明,该方法可以在随机环境中实现信息和计算有效的最佳计划。

Attention control is a key cognitive ability for humans to select information relevant to the current task. This paper develops a computational model of attention and an algorithm for attention-based probabilistic planning in Markov decision processes. In attention-based planning, the robot decides to be in different attention modes. An attention mode corresponds to a subset of state variables monitored by the robot. By switching between different attention modes, the robot actively perceives task-relevant information to reduce the cost of information acquisition and processing, while achieving near-optimal task performance. Though planning with attention-based active perception inevitably introduces partial observations, a partially observable MDP formulation makes the problem computational expensive to solve. Instead, our proposed method employs a hierarchical planning framework in which the robot determines what to pay attention to and for how long the attention should be sustained before shifting to other information sources. During the attention sustaining phase, the robot carries out a sub-policy, computed from an abstraction of the original MDP given the current attention. We use an example where a robot is tasked to capture a set of intruders in a stochastic gridworld. The experimental results show that the proposed method enables information- and computation-efficient optimal planning in stochastic environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源