论文标题
椭圆形纤维纤维的杂音结构模量稳定
Heterotic Complex Structure Moduli Stabilization for Elliptically Fibered Calabi-Yau Manifolds
论文作者
论文摘要
$ n = 1 $ supersymmortricricric的异质压缩的Calabi-yau三倍的复杂结构模量可以通过全体形态矢量束稳定。稳定模量由Atiyah类的计算确定。在本文中,我们研究了这种机制如何在椭圆纤维纤维的calabi-yau歧管的背景下起作用,其中复杂的结构模量空间包含两种模量,一种来自碱基的模量和一种来自纤维的模量。使用频谱盖束,我们发现三种类型的情况,当束的全态性由在特殊选择复杂结构的特殊选择中确定的代数周期确定,这使我们能够稳定这两个模量。我们提供了每种类型的具体示例,并开发了分析稳定模量的实用工具。最后,通过检查F理论中四频和/或局部希格斯捆绑数据的全体形态性,我们简要研究了双重复杂结构模量稳定场景。
Complex structure moduli of a Calabi-Yau threefold in $N=1$ supersymmetric heterotic compactifications can be stabilized by holomorphic vector bundles. The stabilized moduli are determined by a computation of Atiyah class. In this paper, we study how this mechanism work in the context of elliptically fibered Calabi-Yau manifolds where complex structure moduli space contains two kinds of moduli, ones from base and ones from fibration. With spectral cover bundles, we find three types of situations when holomorphicity of bundles is determined by algebraic cycles supported on special choice of complex structure, which allows us to stabilize both of these two moduli. We present concrete examples for each type and develop practical tools to analyze the stabilized moduli. Finally, by checking the holomorphicity of the four-flux and/or local Higgs bundle data in F-theory, we briefly study the dual complex structure moduli stabilization scenarios.