论文标题
Navier-Stokes方程的压力量弱的galerkin有限元法
A Pressure-Robust Weak Galerkin Finite Element Method for Navier-Stokes Equations
论文作者
论文摘要
在本文中,我们通过弱的盖尔金方法为稳定不可压缩的Navier-Stokes方程开发并分析了一种新颖的数值方案。动量方程式的离散化使用了呈差异速度的速度重建算子。通过采用速度构造操作员,我们的算法可以实现压力稳定,这意味着速度误差与压力和无旋转力无关。建立误差分析以显示最佳收敛速率。提出了数值实验以验证理论结论。
In this paper, we develop and analyze a novel numerical scheme for the steady incompressible Navier-Stokes equations by the weak Galerkin methods. The divergence-preserving velocity reconstruction operator is employed in the discretization of momentum equation. By employing the velocity construction operator, our algorithm can achieve pressure-robust, which means, the velocity error is independent of the pressure and the irrotational body force. Error analysis is established to show the optimal rate of convergence. Numerical experiments are presented to validate the theoretical conclusions.