论文标题
半缝合性和扭结散射中的多个振荡脉冲
Semi-compactness and multiple oscillating pulses in kink scattering
论文作者
论文摘要
在这项工作中,我们考虑了不对称扭结的模型,其中溶液在一侧的行为与另一侧不同。同样,模型取决于整数$ n $,并且随着$ n $的增加,构造的扭结假设了混合字符:一侧的紧凑型轮廓和另一侧的扭结状态。我们以数值方式研究了扭结和抗Kink-kink动力学,目的是了解通常的扭结向半连接结构的过渡的效果。 Kink-Antikink过程显示了$ n $的小值的一弹窗的形成。 $ n $的增加有利于破坏这种结构和振荡模式的外观。对于Antikink-Kink碰撞,我们报告了参数小值的两弹窗口的外观。我们还发现了两个振荡窗口的复杂结构。
In this work we consider model of asymmetric kinks, where the behavior of the solution in one side is different from the other side. Also, the models depend of an integer $n$ and, with the increase of $n$, the constructed kink assumes a hybrid character: a compactlike profile on one side and a kinklike profile on the other side. We investigate numerically the kink-antikink and antikink-kink dynamics, with the aim to understand the effect of the transition of the usual kink to the semi-compacton structure. The kink-antikink process shows the formation of one-bounce windows for small values of $n$. The increase of $n$ favors the breaking this structure and the appearance of oscillatory modes. For antikink-kink collisions we report the appearance of two-bounce windows for small values of the parameter. We also found an intricate structure of two-oscillation windows.