论文标题

FINRL:定量融资中自动股票交易的深入加固学习库

FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance

论文作者

Liu, Xiao-Yang, Yang, Hongyang, Chen, Qian, Zhang, Runjia, Yang, Liuqing, Xiao, Bowen, Wang, Christina Dan

论文摘要

由于深度加强学习(DRL)被认为是定量金融的有效方法,因此获得动手体验对初学者具有吸引力。但是,要培训一个实用的DRL贸易代理,该代理商决定以什么价格进行交易,什么数量涉及易用错误和艰巨的开发和调试。在本文中,我们介绍了一个DRL图书馆FINRL,该图书馆促进初学者将自己暴露于定量融资并制定自己的股票交易策略。除了易于复制的教程外,FINRL库允许用户简化自己的开发项目并轻松与现有方案进行比较。在FINRL中,虚拟环境配置了股票市场数据集,交易代理商接受神经网络培训,并通过交易绩效分析了大量的回测。此外,它结合了重要的交易限制,例如交易成本,市场流动性和投资者的风险规避程度。 Finrl具有完整性,动手教程和可重复性,有利于初学者:(i)在多个级别的粒度上,FINRL模拟了各种股票市场的交易环境,包括NASDAQ-100,DJIA,DJIA,S&P 500,HSI,HSI,SSE 50,SSE,SSE 50,以及CSI 300; (ii)在具有模块化结构的分层体系结构中组织,FINRL提供了微调的最先进的DRL算法(DQN,DDPG,DDPG,PPO,SAC,A2C,TD3等),通常使用的奖励功能和标准评估基线,以减轻降低工作负载和促进Reserving Reserfibility and Resodii and(III II II II II II II II II II)。用户IMPORT接口。此外,我们合并了三个申请演示,即单股票交易,多个股票交易和投资组合分配。 FINRL库将在link https://github.com/ai4finance-llc/finrl-library上在github上找到。

As deep reinforcement learning (DRL) has been recognized as an effective approach in quantitative finance, getting hands-on experiences is attractive to beginners. However, to train a practical DRL trading agent that decides where to trade, at what price, and what quantity involves error-prone and arduous development and debugging. In this paper, we introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies. Along with easily-reproducible tutorials, FinRL library allows users to streamline their own developments and to compare with existing schemes easily. Within FinRL, virtual environments are configured with stock market datasets, trading agents are trained with neural networks, and extensive backtesting is analyzed via trading performance. Moreover, it incorporates important trading constraints such as transaction cost, market liquidity and the investor's degree of risk-aversion. FinRL is featured with completeness, hands-on tutorial and reproducibility that favors beginners: (i) at multiple levels of time granularity, FinRL simulates trading environments across various stock markets, including NASDAQ-100, DJIA, S&P 500, HSI, SSE 50, and CSI 300; (ii) organized in a layered architecture with modular structure, FinRL provides fine-tuned state-of-the-art DRL algorithms (DQN, DDPG, PPO, SAC, A2C, TD3, etc.), commonly-used reward functions and standard evaluation baselines to alleviate the debugging workloads and promote the reproducibility, and (iii) being highly extendable, FinRL reserves a complete set of user-import interfaces. Furthermore, we incorporated three application demonstrations, namely single stock trading, multiple stock trading, and portfolio allocation. The FinRL library will be available on Github at link https://github.com/AI4Finance-LLC/FinRL-Library.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源