论文标题

GraphSpy:融合程序通过图神经网络进行死亡商店检测的语义层面嵌入

GRAPHSPY: Fused Program Semantic-Level Embedding via Graph Neural Networks for Dead Store Detection

论文作者

Guo, Yixin, Li, Pengcheng, Luo, Yingwei, Wang, Xiaolin, Wang, Zhenlin

论文摘要

通常,生产软件经常遭受效率低下的问题,这是由于数据结构,编程摘要和保守的编译器优化而引起的。希望避免不必要的内存操作。但是,现有作品通常使用具有令人难以置信的高间接的全程细粒监测方法。为此,我们提出了一种学习辅助方法,以智能地识别不必要的内存操作,而开销低。通过应用多种普遍的图形神经网络模型来提取程序的语义,相对于程序结构,执行顺序和动态状态,我们提出了一种新颖的混合程序嵌入方法,以便通过嵌入来得出不必要的内存操作。我们用从一组实际的基准测试中获取的数万个样本来训练模型。结果表明,我们的模型达到了90%的准确性,并且仅在最先进的工具的一半开销中产生。

Production software oftentimes suffers from the issue of performance inefficiencies caused by inappropriate use of data structures, programming abstractions, and conservative compiler optimizations. It is desirable to avoid unnecessary memory operations. However, existing works often use a whole-program fine-grained monitoring method with incredibly high overhead. To this end, we propose a learning-aided approach to identify unnecessary memory operations intelligently with low overhead. By applying several prevalent graph neural network models to extract program semantics with respect to program structure, execution order and dynamic states, we present a novel, hybrid program embedding approach so that to derive unnecessary memory operations through the embedding. We train our model with tens of thousands of samples acquired from a set of real-world benchmarks. Results show that our model achieves 90% of accuracy and incurs only around a half of time overhead of the state-of-art tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源