论文标题
Jordan的财产用于富吉基级$ c $的紧凑型空间的汽车群
Jordan property for automorphism groups of compact spaces in Fujiki's class $C$
论文作者
论文摘要
让$ x $成为富吉基级$ c $的紧凑型复杂空间。我们表明,$ x $的所有Biholomormormormormormormormorthic of $ x $的$ aut(x)$具有Jordan属性:有一个(Jordan)常数$ J = J(X)$,因此任何有限的子组$ G \ le Aut(x)$都有Abelian sublian subgroup $ h \ le g $ fan Index undex $ g $ [G $ j $ j $ j $ j $ j $ j $ \ le j $ \ le j $ \ le j $。这是一种完全不同的方法,是Moishezon三倍的Prokhorov和Shramov的结果。
Let $X$ be a compact complex space in Fujiki's Class $C$. We show that the group $Aut(X)$ of all biholomorphic automorphisms of $X$ has the Jordan property: there is a (Jordan) constant $J = J(X)$ such that any finite subgroup $G\le Aut(X)$ has an abelian subgroup $H\le G$ with the index $[G:H]\le J$. This extends, with a quite different method, the result of Prokhorov and Shramov for Moishezon threefolds.