论文标题

恢复稳定的分布和有限变化Ornstein-Uhlenbeck过程

Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes

论文作者

Petroni, Nicola Cufaro, Sabino, Piergiacomo

论文摘要

构建\ Levy驱动的Ornstein-uhlenbeck过程是与自我分配性概念密切相关的一项任务。特别是,他们的过渡法与以后将被称为其自我兼容的固定法律的\ emph {a-reminder}的属性有关。在本研究中,我们充分表征了这些A-Reminder s的Lévy三胞胎,并提供了一个通用框架来推断有限变化的Ornstein-Uhlenbeck过程的过渡定律,与稳定的稳定分布相关。我们最终将重点放在指数调制的稳定稳定定律的子类上,并得出了与此类分布相关的Ornstein-Uhlenbeck过程的精确生成的算法,其进一步的优势是,在现有文献中采用了一项程序在计算上的效率更高。

Constructing \Levy-driven Ornstein-Uhlenbeck processes is a task closely related to the notion of self-decomposability. In particular, their transition laws are linked to the properties of what will be hereafter called the \emph{a-reminder} of their self-decomposable stationary laws. In the present study we fully characterize the Lévy triplet of these a-reminder s and we provide a general framework to deduce the transition laws of the finite variation Ornstein-Uhlenbeck processes associated with tempered stable distributions. We focus finally on the subclass of the exponentially-modulated tempered stable laws and we derive the algorithms for an exact generation of the skeleton of Ornstein-Uhlenbeck processes related to such distributions, with the further advantage of adopting a procedure computationally more efficient than those already available in the existing literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源