论文标题
Lofar频率I:对粒子加速机制的见解
The Coma cluster at LOFAR frequencies I: insights into particle acceleration mechanisms in the radio bridge
论文作者
论文摘要
从低密度气体连接星系簇和组的桥梁中的无线电同步发射是粒子加速过程的挑战。在这项工作中,我们使用144 MHz的新低频阵列(Lofar)观测值分析了昏迷桥。 Lofar以前所未有的灵敏度和分辨率检测桥梁及其子结构。我们发现无线电发射峰在NGC 4839组上。朝向光环,在NGC 4839组的前面,无线电亮度降低,无线电发射流将NGC 4839组连接到无线电遗物。使用X射线观察,我们发现热等离子体与亚线性缩放相关。我们使用326 MHz的档案无线电数据来限制桥梁中的光谱指数,并在不同频率下量化颗粒和磁场的分布。我们发现,频谱比$ -1.4 \ pm 0.2 $陡峭,并且在326 MHz时,发射可能比144 MHz更厚。使用宇宙学模拟和一种简化的计算颗粒加速度的方法,我们得出了在哪种条件下,在哪种条件下,轻度相对论电子的湍流加速度可以在桥梁中产生无线电发射。假设相对于热气体,种子电子的初始能量比为$ 3 \ cdot 10^{ - 4} $,我们能够再现观察到的光度。我们的结果表明,桥上放射性释放的种子电子以及气体和星系运动产生的湍流对于产生无线电发射至关重要。
Radio synchrotron emission from the bridges of low-density gas connecting galaxy clusters and groups is a challenge for particle acceleration processes. In this work, we analyse the Coma radio bridge using new LOw Frequency ARray (LOFAR) observations at 144 MHz. LOFAR detects the bridge and its substructures with unprecedented sensitivity and resolution. We find that the radio emission peaks on the NGC 4839 group. Towards the halo, in front of the NGC 4839 group, the radio brightness decreases and streams of radio emission connect the NGC 4839 group to the radio relic. Using X-ray observations, we find that thermal and non-thermal plasma are moderately correlated with a sub-linear scaling. We use archival radio data at 326 MHz to constrain the spectral index in the bridge, and quantify the distribution of particles and magnetic field at different frequencies. We find that the spectrum is steeper than $-1.4 \pm 0.2$, and that the emission could be clumpier at 326 MHz than at 144 MHz. Using cosmological simulations and a simplified approach to compute particle acceleration, we derive under which conditions turbulent acceleration of mildly relativistic electrons could generate the radio emission in the bridge. Assuming that the initial energy ratio of the seed electrons is $3 \cdot 10^{-4}$ with respect to the thermal gas, we are able to reproduce the observed luminosity. Our results suggest that the seed electrons released by radiogalaxies in the bridge and the turbulence generated by the motion of gas and galaxies are essential to produce the radio emission.