论文标题
探索多路轨迹预测的动态上下文
Exploring Dynamic Context for Multi-path Trajectory Prediction
论文作者
论文摘要
为了准确预测在交通情况下不同代理的未来位置,对于在现实世界中安全部署智能自治系统至关重要。但是,由于目标剂的行为受到其他代理的影响,并且该代理商可能采取了多个社会可能的路径,因此仍然是一个挑战。在本文中,我们提出了一个新颖的框架,名为“动态上下文”编码器网络(DCENET)。在我们的框架中,首先,通过使用自我发明体系结构来探索代理之间的空间上下文。然后,通过将各自的观察到的轨迹和提取的动态空间上下文作为输入,对两流编码器进行培训,以学习步骤之间的时间上下文。使用条件变分自动编码器(CVAE)模块将空间上下文编码为潜在空间。最后,通过反复从潜在空间进行采样,预测每种代理的一组未来轨迹。 DCENET对轨迹预测Trajnet的最受欢迎的挑战性基准之一进行了评估,并报告了新的最先进的性能。它还证明了在基准IND上评估的卓越性能,以涉及交叉路口的混合流量。进行了一系列消融研究,以验证每个提出的模块的有效性。我们的代码可在https://github.com/wtliao/dcenet上找到。
To accurately predict future positions of different agents in traffic scenarios is crucial for safely deploying intelligent autonomous systems in the real-world environment. However, it remains a challenge due to the behavior of a target agent being affected by other agents dynamically and there being more than one socially possible paths the agent could take. In this paper, we propose a novel framework, named Dynamic Context Encoder Network (DCENet). In our framework, first, the spatial context between agents is explored by using self-attention architectures. Then, the two-stream encoders are trained to learn temporal context between steps by taking the respective observed trajectories and the extracted dynamic spatial context as input. The spatial-temporal context is encoded into a latent space using a Conditional Variational Auto-Encoder (CVAE) module. Finally, a set of future trajectories for each agent is predicted conditioned on the learned spatial-temporal context by sampling from the latent space, repeatedly. DCENet is evaluated on one of the most popular challenging benchmarks for trajectory forecasting Trajnet and reports a new state-of-the-art performance. It also demonstrates superior performance evaluated on the benchmark inD for mixed traffic at intersections. A series of ablation studies is conducted to validate the effectiveness of each proposed module. Our code is available at https://github.com/wtliao/DCENet.