论文标题
两个动作的故事:二维因果集的变分原理
A Tale of Two Actions: A Variational Principle for Two-Dimensional Causal Sets
论文作者
论文摘要
在本文中,我们将探讨有关因果集动作的两个不同建议:Benincasa-Dowker动作和链条动作的修改版本。我们为二维因果集提出了一个变异原理,并将其用于两个动作,以确定哪些因果集至少平均满足爱因斯坦方程的离散版本。具体而言,我们在嵌入2D Minkowski,De Sitter和Anti-De Sitter SpaceTime中嵌入的因果集上测试了此方法,并将这些结果与最杰出的非Manifoldlike因果关系集进行了比较,Kleitman-Rothschild childschild child child cousal sets。
In this paper we will explore two different proposals for the action for causal sets: the Benincasa-Dowker action and a modified version of the chain action. We propose a variational principle for two-dimensional causal sets and use it for both actions to determine which causal sets at least on average satisfy a discrete version of the Einstein equation. Specifically, we test this method on causal sets embedded in 2d Minkowski, de Sitter, and anti-de Sitter spacetimes and compare these results to the most prominent nonmanifoldlike causal sets, Kleitman-Rothschild causal sets.