论文标题

由理想的非倒数元素结合的电报方程的规范量化

Canonical quantisation of telegrapher's equations coupled by ideal nonreciprocal elements

论文作者

Parra-Rodriguez, A., Egusquiza, I. L.

论文摘要

我们开发了一个系统的程序,以量化通过大量线性损耗的无损耗理想的非重点元素结合的轻质传输模型的典型哈密顿量,在电路QED设置中打破了时间反转对称性。这是通过描述分布式子系统的通量和电荷场来实现的。我们证明,对于更广泛的网络,对哈密顿量的一般推导是必需的。通过在传输线(波导)中利用电磁二元性对称性,我们可以明确识别物理自由度,从而将非动力学部分分开。这种加倍的描述还可以以规律的方式处理其他扩展的集体相互作用的情况,这不带来虚假差异,因为我们在通过传输线连接到约瑟夫森交界处的循环器中明确显示。该理论增强了量子工程工具箱,以设计具有非重点元素的复杂网络。

We develop a systematic procedure to quantise canonically Hamiltonians of light-matter models of transmission lines coupled through lumped linear lossless ideal nonreciprocal elements, that break time-reversal symmetry, in a circuit QED set-up. This is achieved through a description of the distributed subsystems in terms of both flux and charge fields. We prove that this apparent redundancy is required for the general derivation of the Hamiltonian for a wider class of networks. By making use of the electromagnetic duality symmetry in transmission lines (waveguides), we provide unambiguous identification of the physical degrees of freedom, separating out the nondynamical parts. This doubled description can also treat the case of other extended lumped interactions in a regular manner that presents no spurious divergences, as we show explicitly in the example of a circulator connected to a Josephson junction through a transmission line. This theory enhances the quantum engineering toolbox to design complex networks with nonreciprocal elements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源