论文标题

与形状相关的约束意识到通过深卷积gAN的机械设计产生

Shape related constraints aware generation of Mechanical Designs through Deep Convolutional GAN

论文作者

Almasri, Waad, Bettebghor, Dimitri, Ababsa, Fakhreddine, Danglade, Florence

论文摘要

机械产品工程通常必须遵守与塑造过程相关的制造或几何约束。因此,机械设计应依靠可靠和快速的工具来探索复杂形状,通常用于添加剂制造(DFAM)的设计。拓扑优化是一种强大的工具,但是将几何约束(与形状相关)整合到其中很困难。在这项工作中,我们利用机器学习能力来处理复杂的几何和空间相关性,以在概念层面上集成与机械设计过程的几何相关约束。更确切地说,我们探索了最近深度学习体系结构的生成能力,以增强机械设计,通常用于增材制造。在这项工作中,除了一种典型的制造条件(设计的复杂性,即几何条件)之外,我们还建立了一种基于生成的深度学习拓扑优化方法。该方法是一种双歧丝gan:一种发电机,它作为输入机械和几何条件的输入,并输出2D结构和两个歧视器,一种是为了确保生成的结构遵循机械约束,而另一个则遵循了几何约束。我们还探索了具有不均匀材料分布的设计的产生,并显示出令人鼓舞的结果。最后,我们通过对所有想要的方面进行客观评估来评估生成的设计:机械和几何约束。

Mechanical product engineering often must comply with manufacturing or geometric constraints related to the shaping process. Mechanical design hence should rely on robust and fast tools to explore complex shapes, typically for design for additive manufacturing (DfAM). Topology optimization is such a powerful tool, yet integrating geometric constraints (shape-related) into it is hard. In this work, we leverage machine learning capability to handle complex geometric and spatial correlations to integrate into the mechanical design process geometry-related constraints at the conceptual level. More precisely, we explore the generative capabilities of recent Deep Learning architectures to enhance mechanical designs, typically for additive manufacturing. In this work, we build a generative Deep-Learning-based approach of topology optimization integrating mechanical conditions in addition to one typical manufacturing condition (the complexity of a design i.e. a geometrical condition). The approach is a dual-discriminator GAN: a generator that takes as input the mechanical and geometrical conditions and outputs a 2D structure and two discriminators, one to ensure that the generated structure follows the mechanical constraints and the other to assess the geometrical constraint. We also explore the generation of designs with a non-uniform material distribution and show promising results. Finally, We evaluate the generated designs with an objective evaluation of all wanted aspects: the mechanical as well as the geometrical constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源