论文标题

$ \ mathbb {z} _2 $ hurwitz-hodge积分的多项式

Polynomiality of $\mathbb{Z}_2$ Hurwitz-Hodge Integrals

论文作者

Afandi, Adam

论文摘要

使用Atiyah-Bott在稳定地图上的本地化与堆栈商的空间进行本地化,$ [\ MATHBB {p}^1/\ MATHBB {Z} _2] $,我们发现确定所有hodge积分,这些递归与降低插入的所有hodge积分在一个标记的点上,在hyperelliptic locus $ $ \ mathline { 2} \ subseteq \ overline {\ mathcal {m}} _ {g,2g + 2} $。我们递归所需的初始条件是一个标记点​​的重力后裔,已知为$ \ frac {1} {2} $。我们发现了一个有关这些交叉数字的新结构:对于$λ$ - 类的固定单元,由此产生的高ellip虫杂货积分家族在$ g $中是多项式。我们制定了有关这些多项式系数的对数洞穴的猜想。最后,我们将递归转变为非线性偏微分方程的非线性系统,以生成过椭圆形霍奇积分的生成函数。

Using Atiyah-Bott localization on the space of stable maps to the stack quotient $[\mathbb{P}^1/\mathbb{Z}_2]$, we find recursions that determine all Hodge integrals with descendent insertions at one marked point on the hyperelliptic locus $\overline{\mathcal{H}}_{g, 2g + 2} \subseteq \overline{\mathcal{M}}_{g, 2g + 2}$. The initial conditions required for our recursions are gravitational descendents at one marked point, which are known to be $\frac{1}{2}$. We discover a new structure concerning these intersection numbers: for a fixed monomial of $λ$-classes, the resulting family of hyperelliptic Hodge integrals is polynomial in $g$. We formulate a conjecture concerning the log-concavity of the coefficients of these polynomials. Lastly, we turn our recursions into a non-linear system of partial differential equations for the generating functions of hyperelliptic Hodge integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源