论文标题
超对称系统的重新聚集不变模型:BRST和可超级超对象的方法
Reparameterization Invariant Model of a Supersymmetric System: BRST and Supervariable Approaches
论文作者
论文摘要
我们通过利用其经典的无限性和连续重新聚集的对称性转换来执行一个(0 + 1) - 差异(1D)模型的Becchi-Rouet-stora-tyutin(BRST)量化。我们使用修改后的Bonora-Tonin(BT)可让您的方法(MBTSA)进行BRST形式主义,以获取目标空间变量的nilpotent(反)BRST对称转换,以及(反)BRST不变性Curci-Ferrari(CF)限制了我们的Perpersypermmetermmetermecy(SUSY)模型的1D模型。我们模型其他变量的nilpotent(反)BRST对称转换是通过使用(反)手性监督方法(ACSA)来得出BRST形式主义的。在后者的框架内,我们通过证明耦合拉格朗日的(i)对称不变性以及(ii)保守(抗)BRST荷兰的绝对反抗交通属性来证明CF型限制的存在。 MBTSA在物理SUSY系统中的应用(即巨大旋转粒子的一维模型)是我们目前的努力的新结果。在ACSA的应用中,我们仅考虑了超声波处理的(反)手性超级扩张。因此,(反)BRST指控的绝对抗议性观察是一个新的结果。 CF型限制本质上是普遍的,因为事实证明(非)相对论粒子的SUSY和非遇到的重新聚集(即1D差异)模型相同。
We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one (0 + 1)-dimensional (1D) model of a free massive spinning relativistic particle (i.e. a supersymmetric system) by exploiting its classical infinitesimal and continuous reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-)BRST invariant Curci-Ferrari (CF)-type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent (anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type restriction by proving the (i) symmetry invariance of the coupled Lagrangians, and (ii) the absolute anticommutativity property of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e. a 1D model of a massive spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-SUSY reparameterization (i.e. 1D diffeomorphism) invariant models of the (non-)relativistic particles.