论文标题
Geod:基于共识的测量分布姿势图优化
GeoD: Consensus-based Geodesic Distributed Pose Graph Optimization
论文作者
论文摘要
我们提出了一种基于共识的分布式姿势图优化算法,用于在姿势之间噪声相对测量值,以获取姿势图中每个姿势的3D翻译和旋转的估计。该算法称为Geod,实现了连续的时间分布式共识协议,以最大程度地减少地球姿势图误差。 Geod分布在姿势图本身上,图形中的每个节点具有单独的计算线程,并且仅在图中相邻节点之间传递消息。我们利用Lyapunov理论和多代理共识的工具来证明算法的融合。我们确定两个足以收敛的新一致性条件:相对旋转测量的成对一致性,以及相对翻译测量的最小一致性。 GEOD结合了一个简单的一个步骤分布的初始化,以满足这两个条件。我们在模拟和现实世界大满贯数据集上演示了地理。我们将带有最佳证书(SE-SYNC)和分布式高斯seidel(DGS)方法的集中式姿势图形优化器进行比较。平均而言,与SE-Sync提供的全局最小值相比,GEOD比DGS的收敛速度比DGS高20倍,其误差降低了3.4倍。与DGS相比,Geod尺寸比图形更受欢迎,在大于1000个姿势的图上收敛了100倍以上。最后,我们在基于多UAV视觉的SLAM场景上测试GEOD,在该场景中,无人机使用从其板上摄像头图像中提取的相对姿势以分布式方式估算其姿势轨迹。我们显示的定性性能比集中式SE-SYNC或分布式DGS方法更好。
We present a consensus-based distributed pose graph optimization algorithm for obtaining an estimate of the 3D translation and rotation of each pose in a pose graph, given noisy relative measurements between poses. The algorithm, called GeoD, implements a continuous time distributed consensus protocol to minimize the geodesic pose graph error. GeoD is distributed over the pose graph itself, with a separate computation thread for each node in the graph, and messages are passed only between neighboring nodes in the graph. We leverage tools from Lyapunov theory and multi-agent consensus to prove the convergence of the algorithm. We identify two new consistency conditions sufficient for convergence: pairwise consistency of relative rotation measurements, and minimal consistency of relative translation measurements. GeoD incorporates a simple one step distributed initialization to satisfy both conditions. We demonstrate GeoD on simulated and real world SLAM datasets. We compare to a centralized pose graph optimizer with an optimality certificate (SE-Sync) and a Distributed Gauss-Seidel (DGS) method. On average, GeoD converges 20 times more quickly than DGS to a value with 3.4 times less error when compared to the global minimum provided by SE-Sync. GeoD scales more favorably with graph size than DGS, converging over 100 times faster on graphs larger than 1000 poses. Lastly, we test GeoD on a multi-UAV vision-based SLAM scenario, where the UAVs estimate their pose trajectories in a distributed manner using the relative poses extracted from their on board camera images. We show qualitative performance that is better than either the centralized SE-Sync or the distributed DGS methods.