论文标题
魔法角度的软模式扭曲的双层石墨烯
Soft modes in magic angle twisted bilayer graphene
论文作者
论文摘要
我们介绍了一项针对扭曲双层石墨烯中整数填充物的不同绝缘状态的低能量集体模式的系统研究。特别是,我们为软模式的总数提供了一个简单的计数规则,并详细分析了它们的能量和对称量子数。为了研究软模式光谱,我们采用了依赖时间的Hartree-fock,其结果通过有效的Sigma模型描述在分析上复制。我们发现两种不同类型的低能模式 - (i)与打破扩大的U(4)$ \ times $ u(4)对称性相关的近似戈德石模式,而且令人惊讶的是,一组(II)的nematic模式在三倍旋转下具有非零角度动量。 (i)类型的模式还包括与精确对称性相关的真实无间隙金矿模式,除了与近似对称性相关的“伪金石”模式。虽然(II)类型的模式始终被散布,但我们表明它们的间隙随着浆果曲率的增长而减小。对于现实的参数值,两种类型的间隙软模式仅具有少数MEV的可比差距,并且完全位于均值场频段段内。整个软模式浮出水面,作为不同理想化模型的金石模式,其中浆果通量仅限于螺线管,该模式属于螺线管,该模式具有扩大的U(8)对称性。此外,我们讨论了每个对称性破裂状态的金石模式的数量,从而区分线性与四次分散模式。最后,我们对整数填充物的所有可能的绝缘Slater决定符状态的软模式进行了对称模式的一般对称分析,该状态保留了翻译对称性,而与能量细节无关。所得的软模式退化和对称量子数为不同的侮辱性状态提供了指纹,从而可以从其软模式的测量中实验识别。
We present a systematic study of the low-energy collective modes for different insulating states at integer fillings in twisted bilayer graphene. In particular, we provide a simple counting rule for the total number of soft modes, and analyze their energies and symmetry quantum numbers in detail. To study the soft mode spectra, we employ time dependent Hartree-Fock whose results are reproduced analytically via an effective sigma model description. We find two different types of low-energy modes - (i) approximate Goldstone modes associated with breaking an enlarged U(4)$\times$U(4) symmetry and, surprisingly, a set of (ii) nematic modes with non-zero angular momentum under three-fold rotation. The modes of type (i) include true gapless Goldstone modes associated with exact symmetries in addition to gapped "pseudo-Goldstone" modes associated with approximate symmetries. While the modes of type (ii) are always gapped, we show that their gap decreases as the Berry curvature grows more concentrated. For realistic parameter values, the gapped soft modes of both types have comparable gaps of only a few meV, and lie completely inside the mean-field bandgap. The entire set of soft modes emerge as Goldstone modes of a different idealized model in which Berry flux is limited to a solenoid, which enjoys an enlarged U(8) symmetry. Furthermore, we discuss the number of Goldstone modes for each symmetry-broken state, distinguishing the linearly vs quadratically dispersing modes. Finally, we present a general symmetry analysis of the soft modes for all possible insulating Slater determinant states at integer fillings that preserve translation symmetry, independent of the energetic details. The resulting soft mode degeneracies and symmetry quantum numbers provide a fingerprint of the different insulting states enabling their experimental identification from a measurement of their soft modes.