论文标题
异步液体:区域时间步入更快的SPH和PCISPH
Asynchronous Liquids: Regional Time Stepping for Faster SPH and PCISPH
论文作者
论文摘要
本文提出了新颖有效的策略,以根据自由表面流的局部动力学(用于经典弱压缩的SPH(WCSPH)和预测性校正不可压缩的不可压缩SPH(PCISPH),在空间上适应了计算工作量。使用方便且容易平行的基于块的方法,分配了不同的流体区域,并以不同的速度解决了不同的时间步骤,以最大程度地减少计算成本。我们的WCSPH方案方法将异步的SPH技术从天体物理现象的可压缩流到不可压缩的自由表面设置,并通过完全解耦,从而进一步加速了它,从而将其进一步加速。同样,我们的PCISPH方法调整了应用于不同区域的密度校正的迭代次数,并且异步更新了用于执行这些校正的邻里区域;这大大降低了缓慢变形区域的计算成本,同时保留标准密度不变。我们在许多高度动态的场景上演示了我们的方法,表明它们通常可以使模拟的速度与标准方法相比,同时获得视觉上一致的结果。
This paper presents novel and efficient strategies to spatially adapt the amount of computational effort applied based on the local dynamics of a free surface flow, for both classic weakly compressible SPH (WCSPH) and predictive-corrective incompressible SPH (PCISPH). Using a convenient and readily parallelizable block-based approach, different regions of the fluid are assigned differing time steps and solved at different rates to minimize computational cost. Our approach for WCSPH scheme extends an asynchronous SPH technique from compressible flow of astrophysical phenomena to the incompressible free surface setting, and further accelerates it by entirely decoupling the time steps of widely spaced particles. Similarly, our approach to PCISPH adjusts the the number of iterations of density correction applied to different regions, and asynchronously updates the neighborhood regions used to perform these corrections; this sharply reduces the computational cost of slowly deforming regions while preserving the standard density invariant. We demonstrate our approaches on a number of highly dynamic scenarios, demonstrating that they can typically double the speed of a simulation compared to standard methods while achieving visually consistent results.