论文标题
二元性和域墙动力学在扭曲的基塔夫链中
Duality and domain wall dynamics in a twisted Kitaev chain
论文作者
论文摘要
横向场中的Ising链是用于多种物理现象的范式模型,包括自发对称性破坏,拓扑缺陷,量子关键性和二元性。尽管已提出的准1D Ferromagnet conb $ _2 $ o $ _6 $是横向场Ising模型的最佳实质示例,但它表现出与理想性的显着偏差。通过THZ光谱和理论的结合,我们表明,conb $ _2 $ o $ _6 $实际上是通过具有强债券相互作用的不同模型很好地描述的,我们将{\ it Twisted Kitaev Chain}配音,因为这些相互作用与强度与强化的hearnycombeneycomb kitycomb kitycomevs相吻合。在此模型中,conb $ _2 $ o $ _6 $的铁磁基态源于两个不同的交替轴之间的折衷,而不是一个简单的轴。由于这种挫败感,即使在零应用的田间域,壁激励具有量子运动,这是由著名的su-schriefer-heeger模型的聚乙二烯模型描述的。这导致了丰富的行为与场的关系。尽管有异常的域壁动力学,但接近关键的横向场,扭曲的基塔夫链仍进入伊辛普遍性类别的普遍状态。这反映了这样的观察结果,即conb $ _2 $ o $ $ _6 $中的激发差距以准确的速度约束了Paramagnet的两倍。这起源于域壁和旋转式纸条之间的二元性以及域壁平价的拓扑保护。我们测量了这个通用比率`2'与高精度 - 在自然界中kramers-wannier二元性的第一个直接证据。
The Ising chain in transverse field is a paradigmatic model for a host of physical phenomena, including spontaneous symmetry breaking, topological defects, quantum criticality, and duality. Although the quasi-1D ferromagnet CoNb$_2$O$_6$ has been put forward as the best material example of the transverse field Ising model, it exhibits significant deviations from ideality. Through a combination of THz spectroscopy and theory, we show that CoNb$_2$O$_6$ in fact is well described by a different model with strong bond dependent interactions, which we dub the {\it twisted Kitaev chain}, as these interactions share a close resemblance to a one-dimensional version of the intensely studied honeycomb Kitaev model. In this model the ferromagnetic ground state of CoNb$_2$O$_6$ arises from the compromise between two distinct alternating axes rather than a single easy axis. Due to this frustration, even at zero applied field domain-wall excitations have quantum motion that is described by the celebrated Su-Schriefer-Heeger model of polyacetylene. This leads to rich behavior as a function of field. Despite the anomalous domain wall dynamics, close to a critical transverse field the twisted Kitaev chain enters a universal regime in the Ising universality class. This is reflected by the observation that the excitation gap in CoNb$_2$O$_6$ in the ferromagnetic regime closes at a rate precisely twice that of the paramagnet. This originates in the duality between domain walls and spin-flips and the topological conservation of domain wall parity. We measure this universal ratio `2' to high accuracy -- the first direct evidence for the Kramers-Wannier duality in nature.