论文标题

MPC控制器使用贝叶斯优化技术调整

MPC Controller Tuning using Bayesian Optimization Techniques

论文作者

Lu, Qiugang, Kumar, Ranjeet, Zavala, Victor M.

论文摘要

我们提出了中央加热,通风和空调(HVAC)植物的调整模型预测控制器(MPC)的贝叶斯优化(BO)框架。这种方法将MPC的闭环性能与其调谐参数视为黑框之间的功能关系。这种方法是通过观察到的,即通过反复试验评估MPC的闭环性能是耗时的(例如,每个闭环模拟都可以解决数千个优化问题)。提出的BO框架试图通过策略性探索和利用调音参数的空间来快速识别最佳调整参数。通过使用现实数据,将MPC控制器用于中央HVAC工厂,可以证明BO框架的有效性。在这里,BO框架调整了热储罐的后退术语,以最大程度地降低为期​​一年的闭环成本。仿真结果表明,BO可以通过进行长达13年的模拟来找到最佳的后退术语,从而大大减轻了幼稚网格搜索的计算负担。我们还发现,使用BO获得的后退条款降低了闭环成本。

We present a Bayesian optimization (BO) framework for tuning model predictive controllers (MPC) of central heating, ventilation, and air conditioning (HVAC) plants. This approach treats the functional relationship between the closed-loop performance of MPC and its tuning parameters as a black-box. The approach is motivated by the observation that evaluating the closed-loop performance of MPC by trial-and-error is time-consuming (e.g., every closed-loop simulation can involve solving thousands of optimization problems). The proposed BO framework seeks to quickly identify the optimal tuning parameters by strategically exploring and exploiting the space of the tuning parameters. The effectiveness of the BO framework is demonstrated by using an MPC controller for a central HVAC plant using realistic data. Here, the BO framework tunes back-off terms for thermal storage tanks to minimize year-long closed-loop costs. Simulation results show that BO can find the optimal back-off terms by conducting 13 year-long simulations, which significantly reduces the computational burden of a naive grid search. We also find that the back-off terms obtained with BO reduce the closed-loop costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源