论文标题

学会生成图像源 - 反应式通用对抗扰动

Learning to Generate Image Source-Agnostic Universal Adversarial Perturbations

论文作者

Zhao, Pu, Ram, Parikshit, Lu, Songtao, Yao, Yuguang, Bouneffouf, Djallel, Lin, Xue, Liu, Sijia

论文摘要

对抗性扰动对于证明深度学习模型的鲁棒性至关重要。通用的对抗扰动(UAP)可以同时攻击多个图像,因此提供了更统一的威胁模型,从而避免了图像攻击算法。但是,当从不同的图像源绘制图像(例如,具有不同的图像分辨率)时,现有的UAP生成器不发达。在图像来源的真实普遍性方面,我们将UAP生成的新颖看法是一个自定义的少数学习实例,它利用了双重优化和学习优化的(L2O)技术,以提高攻击成功率(ASR)。我们首先考虑流行的模型不可知论元学习(MAML)框架,以将UAP生成器元素进行。但是,我们看到MAML框架并未直接提供跨图像源的通用攻击,因此要求我们将其与L2O的另一个元学习框架集成在一起。与预计梯度下降(II)相比,元学习UAP发电机(I)的元学习方案(I)的性能(ASR高50%)的性能更好(II)的性能(II)比香草L2O和MAML框架(适用于适用)和(III)的性能更好(快37%),并且能够同时处理UAP生成的受害者模型和图像模型的UAP生成。

Adversarial perturbations are critical for certifying the robustness of deep learning models. A universal adversarial perturbation (UAP) can simultaneously attack multiple images, and thus offers a more unified threat model, obviating an image-wise attack algorithm. However, the existing UAP generator is underdeveloped when images are drawn from different image sources (e.g., with different image resolutions). Towards an authentic universality across image sources, we take a novel view of UAP generation as a customized instance of few-shot learning, which leverages bilevel optimization and learning-to-optimize (L2O) techniques for UAP generation with improved attack success rate (ASR). We begin by considering the popular model agnostic meta-learning (MAML) framework to meta-learn a UAP generator. However, we see that the MAML framework does not directly offer the universal attack across image sources, requiring us to integrate it with another meta-learning framework of L2O. The resulting scheme for meta-learning a UAP generator (i) has better performance (50% higher ASR) than baselines such as Projected Gradient Descent, (ii) has better performance (37% faster) than the vanilla L2O and MAML frameworks (when applicable), and (iii) is able to simultaneously handle UAP generation for different victim models and image data sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源