论文标题

作为$ \ mathrm {suplat} $的共同质量hopf代数的残余物作为偏斜的牙套

Skew Braces as Remnants of Co-quasitriangular Hopf Algebras in $\mathrm{SupLat}$

论文作者

Ghobadi, Aryan

论文摘要

偏斜的牙套最近引起了人们的关注,作为研究Yang-Baxter方程的设定理论解决方案的一种方法。在这里,我们通过研究类别中的Hopf代数,即$ \ Mathrm {suplat} $,介绍了这些解决方案的新方法,该方法是完整晶格的$ \ mathrm {suplat} $,并加入了保留的形态。我们通过证明任何Hopf代数,$ \ Mathcal {h} $中的$ \ MATHRM {suplat} $都有一个相应的组,$ r(\ Mathcal {h})$来连接这两种方法,我们称之为$ \ \ m nation $ \ nathcal in Ind y y y y y y y y y y y, $ r(\ Mathcal {h})$,与其组结构兼容。相反,任何具有兼容YBE解决方案的组都可以通过这种方式实现。此外,众所周知,任何此类群体都具有诱导的二级组结构,使其成为左支架的偏斜。通过将小组视为共同Qualiangular Hopf代数的残余,$ \ Mathcal {H} $,该辅助组结构出现为$ \ Mathcal {H h} $的trans变的投影。最后,对于任何YBE解决方案,我们在$ \ mathrm {suplat} $中获得了FRT型Hopf代数,其残余物恢复了解决方案的通用偏斜支撑。

Skew braces have recently attracted attention as a method to study set-theoretical solutions of the Yang-Baxter equation. Here, we present a new approach to these solutions by studying Hopf algebras in the category, $\mathrm{SupLat}$, of complete lattices and join-preserving morphisms. We connect the two methods by showing that any Hopf algebra, $\mathcal{H}$ in $\mathrm{SupLat}$, has a corresponding group, $R(\mathcal{H})$, which we call its remnant and a co-quasitriangular structure on $\mathcal{H}$ induces a YBE solution on $R(\mathcal{H})$, which is compatible with its group structure. Conversely, any group with a compatible YBE solution can be realised in this way. Additionally, it is well-known that any such group has an induced secondary group structure, making it a skew left brace. By realising the group as the remnant of a co-quasitriangular Hopf algebra, $\mathcal{H}$, this secondary group structure appears as the projection of the transmutation of $\mathcal{H}$. Finally, for any YBE solution, we obtain a FRT-type Hopf algebra in $\mathrm{SupLat}$, whose remnant recovers the universal skew brace of the solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源