论文标题

不可避免的大型2相互连接图的亚图

Unavoidable Induced Subgraphs of Large 2-Connected Graphs

论文作者

Allred, Sarah, Ding, Guoli, Oporowski, Bogdan

论文摘要

拉姆西证明,对于每个正整数$ n $,每个足够大的图都包含一个诱导的$ k_n $或$ \ overline {k} _n $。在Ramsey定理的许多扩展中,有一个用于连接的图形的类似物:对于每个正整数$ n $,每个足够大的连接图都包含诱导的$ k_n $,$ k_ {1,n} $或$ p_n $。在本文中,我们为2个连接图建立了一个类似物。特别是,我们证明,对于每个超过两个的整数,每个足够大的2个连接图都包含以下一个诱导子图:$ k_n $,一个$ k_ {2,n} $的细分,一个$ k_ {2,n} $的细分,具有两个vertices $ n $ $ n $ $ n $ ncord的effer and praind prainder and prainder and praind praind praind and praind pradection and praind prad and。

Ramsey proved that for every positive integer $n$, every sufficiently large graph contains an induced $K_n$ or $\overline{K}_n$. Among the many extensions of Ramsey's Theorem there is an analogue for connected graphs: for every positive integer $n$, every sufficiently large connected graph contains an induced $K_n$, $K_{1,n}$, or $P_n$. In this paper, we establish an analogue for 2-connected graphs. In particular, we prove that for every integer exceeding two, every sufficiently large 2-connected graph contains one of the following as an induced subgraph: $K_n$, a subdivision of $K_{2,n}$, a subdivision of $K_{2,n}$ with an edge between the two vertices of degree $n$, and a well-defined structure similar to a ladder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源