论文标题
包装$ a $ path长度零模型a Prime
Packing $A$-paths of length zero modulo a prime
论文作者
论文摘要
众所周知,如果$ m = 2 $或$ m = 4 $,则$ 0 $ 0 $ 0 $ mod $ m $满足eRdős-pósa属性,但如果$ m> 4 $是复合的,则不会。我们表明,如果$ p $是PRIME,则$ a $ a-Paths $ 0 $ mod $ p $满足Erdős-Pósa属性。更笼统地,在无向组标记的图表的框架中,我们表征了Abelian groups $γ$和元素$ \ ell \ inγ$中的Erdős-Pósa属性属性属于$ a $ a的权重$ \ ell $。
It is known that $A$-paths of length $0$ mod $m$ satisfy the Erdős-Pósa property if $m=2$ or $m=4$, but not if $m > 4$ is composite. We show that if $p$ is prime, then $A$-paths of length $0$ mod $p$ satisfy the Erdős-Pósa property. More generally, in the framework of undirected group-labelled graphs, we characterize the abelian groups $Γ$ and elements $\ell \in Γ$ for which the Erdős-Pósa property holds for $A$-paths of weight $\ell$.