论文标题
拍卖设计中信息中介的限制
The Limits of an Information Intermediary in Auction Design
论文作者
论文摘要
我们研究了古典贝叶斯拍卖中信息中介机构的限制,在那里,最大化的卖方将一件商品出售给具有独立私人价值的$ n $买家。此外,我们还有一个中介人知道买家的私人价值,并可以将其映射到公共信号以增加消费者剩余。该模型概括了Bergemann,Brooks和Morris提出的单个建筑设置,他们通过保证始终出售该商品,并且卖方获得与没有信号的相同收入,从而提出了一项信号计划,从而提高了最佳的消费者盈余。我们的工作旨在了解这将如何与多个买家一起进入设置。 我们同样为最佳消费者盈余定义了基准:拍卖效率有效的地方(即,该商品始终出售给价值最高的买家),而卖方的收入不变。我们表明,即使对于$ n = 2 $的买家,也没有信号计划可以保证此基准,并具有$ 2 $ - 点评估分布。实际上,在保留原始消费者剩余的任何非平凡的同时,没有信号方案可以是有效的,并且与基准相比,没有信号传导方案可以更好地保证消费者的盈余优于$ \ frac {1} {2} $。这些不可能的结果是存在的(超出计算),并在单个和多购买者设置之间提供了急剧的分离。 鉴于这种不可能,我们开发了具有良好近似值的信号方案,可确保基准。我们的主要技术结果是I.I.D.的$ O(1)$ - 近似。常规买家,通过概念上简单且可以在多项式时间内计算的信号方案。我们还向一般独立分布的情况提供了扩展。
We study the limits of an information intermediary in the classical Bayesian auction, where a revenue-maximizing seller sells one item to $n$ buyers with independent private values. In addition, we have an intermediary who knows the buyers' private values, and can map these to a public signal so as to increase consumer surplus. This model generalizes the single-buyer setting proposed by Bergemann, Brooks, and Morris, who present a signaling scheme that raises the optimal consumer surplus, by guaranteeing that the item is always sold and the seller gets the same revenue as without signaling. Our work aims to understand how this result ports to the setting with multiple buyers. We likewise define the benchmark for the optimal consumer surplus: one where the auction is efficient (i.e., the item is always sold to the highest-valued buyer) and the revenue of the seller is unchanged. We show that no signaling scheme can guarantee this benchmark even for $n=2$ buyers with $2$-point valuation distributions. Indeed, no signaling scheme can be efficient while preserving any non-trivial fraction of the original consumer surplus, and no signaling scheme can guarantee consumer surplus better than a factor of $\frac{1}{2}$ compared to the benchmark. These impossibility results are existential (beyond computational), and provide a sharp separation between the single and multi-buyer settings. In light of this impossibility, we develop signaling schemes with good approximation guarantees to the benchmark. Our main technical result is an $O(1)$-approximation for i.i.d. regular buyers, via signaling schemes that are conceptually simple and computable in polynomial time. We also present an extension to the case of general independent distributions.