论文标题

二维非现实系统中域增长和衰老的动力学

Kinetics of Domain Growth and Aging in a Two-Dimensional Off-lattice System

论文作者

Midya, Jiarul, Das, Subir K.

论文摘要

我们已经使用了分子动力学模拟,对二维单个成分非晶格模型中的相分离进行了全面研究,其中颗粒通过Lennard-Jones潜力相互作用。通过最新方法,我们分析了模型中非平衡演变的结构,增长和衰老的模拟数据。这些数据是在平衡均衡的均匀构型的淬火后获得的,密度接近临界值,以与混溶间隙内的各种温度,具有蒸气 - “液体”以及蒸气 - “固体”共存。对于蒸气 - 液相分离,我们观察到$ \ ell $(平均域长度)随时间($ t $)作为$ t^{1/2} $增长,这种行为与水力动力学有联系。在足够低的温度下,这段时间的急剧跨越依赖性较慢,温度取决于温度,在我们的模拟时间尺度内确定了生长,这意味着高密度相的“实心”类似“实心”的最终状态。有趣的是,这种交叉伴随着域形态和两种情况之间的其他结构方面的强烈差异。对于衰老,我们提出了订单参数自相关功能的结果。此数量在$ \ ell/\ ell_w $,$ \ ell $和$ \ ell_w $方面表现出数据崩溃,分别是$ t $和$ t_w $($ \ leq t $)的平均域长度,后者是系统的年龄。相应的缩放函数遵循幂律衰减:$〜\ sim(\ ell/\ ell_w)^{--λ} $,对于$ t \ gg t_w $。对于蒸气液体情况,衰减指数$λ$通过应用高级有限尺寸缩放方法准确估算。观察到获得的值以满足结合。

We have used molecular dynamics simulations for a comprehensive study of phase separation in a two-dimensional single component off-lattice model where particles interact through the Lennard-Jones potential. Via state-of-the-art methods we have analyzed simulation data on structure, growth and aging for nonequilibrium evolutions in the model. These data were obtained following quenches of well-equilibrated homogeneous configurations, with density close to the critical value, to various temperatures inside the miscibility gap, having vapor-"liquid" as well as vapor-"solid" coexistence. For the vapor-liquid phase separation we observe that $\ell$, the average domain length, grows with time ($t$) as $t^{1/2}$, a behavior that has connection with hydrodynamics. At low enough temperature, a sharp crossover of this time dependence to a much slower, temperature dependent, growth is identified within the time scale of our simulations, implying "solid"-like final state of the high density phase. This crossover is, interestingly, accompanied by strong differences in domain morphology and other structural aspects between the two situations. For aging, we have presented results for the order-parameter autocorrelation function. This quantity exhibits data-collapse with respect to $\ell/\ell_w$, $\ell$ and $\ell_w$ being the average domain lengths at times $t$ and $t_w$ ($\leq t$), respectively, the latter being the age of a system. Corresponding scaling function follows a power-law decay: $~\sim (\ell/\ell_w)^{-λ}$, for $t\gg t_w$. The decay exponent $λ$, for the vapor-liquid case, is accurately estimated via the application of an advanced finite-size scaling method. The obtained value is observed to satisfy a bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源