论文标题
几何实现为Skorokhod半连续路径空间endofunctor
Geometric realisation as the Skorokhod semi-continuous path space endofunctor
论文作者
论文摘要
我们将简单集的[Besser],[Grayson]和[Drinfeld]的几何实现结构解释为构造从间隔到简单集的地图空间,从某种形式的意义上讲,让人联想到半连续功能的Skorokhod空间;特别是,我们通过特定类别的内for词显示了几何实现函子因子。我们的解释阐明了[Drinfeld]的解释:“为什么几何实现笛卡尔产品的通勤以及为什么简单集的几何实现[...]的几何实现配备了保留该段[0,1]同态同态同态的方向的作用。
We interpret a construction of geometric realisation by [Besser], [Grayson], and [Drinfeld] of a simplicial set as constructing a space of maps from the interval to a simplicial set, in a certain formal sense, reminiscent of the Skorokhod space of semi-continuous functions; in particular, we show the geometric realisation functor factors through an endofunctor of a certain category. Our interpretation clarifies the explanation of [Drinfeld] "why geometric realization commutes with Cartesian products and why the geometric realization of a simplicial set [...] is equipped with an action of the group of orientation preserving homeomorphisms of the segment [0,1]".