论文标题
分数随机延迟动态系统的可控性
Controllability of fractional stochastic delay dynamical systems
论文作者
论文摘要
在本文中,我们考虑具有透明矩阵的Caputo型分数随机时间延迟系统。我们通过新定义的延迟的Mittag-Leffer型矩阵函数得出了常数公式变化的随机类似物。因此,我们在加权最大规范的帮助下,对分数随机时间延迟差微分方程的有效最大规范进行了新的结果研究,其系数满足了标准Lipschitz条件。证据中的要点是应用ITO的等轴测图和Martingale代表定理,并显示积分方程和轻度溶液之间的巧合概念。最后,我们研究了具有维纳噪声的线性和非线性分数随机延迟动力学系统的完整可控性结果。
In this paper, we consider Caputo type fractional stochastic time-delay system with permutable matrices. We derive stochastic analogue of variation of constants formula via a newly defined delayed Mittag-Leffer type matrix function. Thus, we investigate new results on existence and uniqueness of mild solutions with the help of weighted maximum norm to fractional stochastic time-delay differential equations whose coefficients satisfy standard Lipschitz conditions. The main points in the proof are to apply Ito's isometry and martingale representation theorem, and to show the notion of a coincidence between the integral equation and the mild solution. Finally, we study complete controllability results for linear and nonlinear fractional stochastic delay dynamical systems with Wiener noise.