论文标题
具有纯连续能光谱系统的连贯状态
Coherent States of Systems with Pure Continuous Energy Spectra
论文作者
论文摘要
在与连续光谱的哈密顿量打交道时,我们使用涉及正交多项式的三角法方法来构建一组相干状态,遵守Glauber型条件。我们对正交度量的重量函数进行贝叶斯分解,以表明在Gazeau-Klauder方法中可以重铸获得的相干状态。 $ \ ell $ - 波没有粒子的哈密顿量被视为说明该方法的示例。
While dealing with a Hamiltonian with continuous spectrum we use a tridiagonal method involving orthogonal polynomials to construct a set of coherent states obeying a Glauber-type condition. We perform a Bayesian decomposition of the weight function of the orthogonality measure to show that the obtained coherent states can be recast in the Gazeau-Klauder approach. The Hamiltonian of the $\ell$-wave free particle is treated as an example to illustrate the method.