论文标题
关于分布式差异隐私和计算不同的要素
On Distributed Differential Privacy and Counting Distinct Elements
论文作者
论文摘要
我们研究了$ n $用户中每个元素中的每个元素中的每个设置,目标是在$(ε,δ)$ - 差异性隐私下计算所有用户的不同元素的数量: - 在非交互性本地设置中,我们证明任何常数$ε$的任何协议的加性误差均为$ω(n)$,对于任何$ n $中的任何$δ$ the to $Δ$ theveral toversy polyenmial。 - 在单件混洗设置中,我们证明了任何常数$ε$的$ω(n)$的下限,对于$ n $中的任何常数$ε$,对于某些$Δ$ tobles to $Δ$ tobles tovers quasi-polynomial。我们通过基于分布估计的文献构建矩匹配方法来做到这一点。 - 在多件混洗设置中,我们为任何常数$ε$的$ \ tilde {o}(\ sqrt(n))$ to $ \ tilde {o}提供了一个协议,对于任何常数$ε$,对于任何$Δ$ n $ n $ in $ n $。我们的协议也很牢固地私有化,我们的$ \ sqrt(n)$错误与此类协议的已知下限匹配。 我们的证明技术依赖于一个新的概念,即我们称为主导的协议,并且还可以用来获得第一个非平凡的下限,以针对多媒体洗牌协议,以解决精心挑选和学习奇偶的问题。 我们估计不同元素数量的第一个下限提供了第一个$ω(\ sqrt(n))$在当地差异隐私中的全球灵敏度与错误之间的分离,从而回答了Vadhan(2017)的开放问题。我们还提供了一种简单的结构,该结构在两党差异隐私中提供了$ \tildeΩ(n)$之间的分离,从而回答了McGregor等人的开放问题。 (2011)。
We study the setup where each of $n$ users holds an element from a discrete set, and the goal is to count the number of distinct elements across all users, under the constraint of $(ε, δ)$-differentially privacy: - In the non-interactive local setting, we prove that the additive error of any protocol is $Ω(n)$ for any constant $ε$ and for any $δ$ inverse polynomial in $n$. - In the single-message shuffle setting, we prove a lower bound of $Ω(n)$ on the error for any constant $ε$ and for some $δ$ inverse quasi-polynomial in $n$. We do so by building on the moment-matching method from the literature on distribution estimation. - In the multi-message shuffle setting, we give a protocol with at most one message per user in expectation and with an error of $\tilde{O}(\sqrt(n))$ for any constant $ε$ and for any $δ$ inverse polynomial in $n$. Our protocol is also robustly shuffle private, and our error of $\sqrt(n)$ matches a known lower bound for such protocols. Our proof technique relies on a new notion, that we call dominated protocols, and which can also be used to obtain the first non-trivial lower bounds against multi-message shuffle protocols for the well-studied problems of selection and learning parity. Our first lower bound for estimating the number of distinct elements provides the first $ω(\sqrt(n))$ separation between global sensitivity and error in local differential privacy, thus answering an open question of Vadhan (2017). We also provide a simple construction that gives $\tildeΩ(n)$ separation between global sensitivity and error in two-party differential privacy, thereby answering an open question of McGregor et al. (2011).