论文标题

Astrovader:天文变异深嵌入器,用于无监督星系和合成图像产生的形态分类

AstroVaDEr: Astronomical Variational Deep Embedder for Unsupervised Morphological Classification of Galaxies and Synthetic Image Generation

论文作者

Spindler, Ashley, Geach, James E., Smith, Michael J.

论文摘要

我们提出了Astrovader,这是一种旨在使用天文成像目录进行无监督的聚类和合成图像生成的差异自动编码器。该模型是一个卷积神经网络,该网络学会了将图像嵌入低维的潜在空间,并同时优化了嵌入式向量上的高斯混合模型(GMM),以将训练数据聚集。通过利用变异推断,我们能够将学习的GMM用作潜在空间的统计先验,以促进随机抽样和生成合成图像。我们使用由Galaxy Zoo 2进行了分类的星系样本,在Sloan Digital Sky调查中对Astrovader的功能进行了训练,从而在Sloan Digital Sky调查中进行了训练。发现了一个无人监督的聚类模型,这些模型是找到基于学习的形态学特征,例如轴心比率,表面亮度,表面亮度,并在表面亮相,与之相处,并与之相处。我们使用学识渊博的混合模型根据高斯组件的形态谱生成星系的合成图像。 Astrovader成功地从未标记的数据中产生了形态学分类方案,但出乎意料的是,对伴侣对象的存在非常重要 - 证明了人类解释的重要性。该网络可扩展且灵活,可以将较大的数据集分类或不同类型的成像数据进行分类。我们还演示了模型的生成特性,该特性允许从学习分类方案中对星系的逼真的合成图像。这些可用于创建综合图像目录或执行图像处理任务,例如删除。

We present AstroVaDEr, a variational autoencoder designed to perform unsupervised clustering and synthetic image generation using astronomical imaging catalogues. The model is a convolutional neural network that learns to embed images into a low dimensional latent space, and simultaneously optimises a Gaussian Mixture Model (GMM) on the embedded vectors to cluster the training data. By utilising variational inference, we are able to use the learned GMM as a statistical prior on the latent space to facilitate random sampling and generation of synthetic images. We demonstrate AstroVaDEr's capabilities by training it on gray-scaled \textit{gri} images from the Sloan Digital Sky Survey, using a sample of galaxies that are classified by Galaxy Zoo 2. An unsupervised clustering model is found which separates galaxies based on learned morphological features such as axis ratio, surface brightness profile, orientation and the presence of companions. We use the learned mixture model to generate synthetic images of galaxies based on the morphological profiles of the Gaussian components. AstroVaDEr succeeds in producing a morphological classification scheme from unlabelled data, but unexpectedly places high importance on the presence of companion objects---demonstrating the importance of human interpretation. The network is scalable and flexible, allowing for larger datasets to be classified, or different kinds of imaging data. We also demonstrate the generative properties of the model, which allow for realistic synthetic images of galaxies to be sampled from the learned classification scheme. These can be used to create synthetic image catalogs or to perform image processing tasks such as deblending.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源