论文标题

DES SV弱透镜图统计的神经压缩的可能性无可能推理

Likelihood-free inference with neural compression of DES SV weak lensing map statistics

论文作者

Jeffrey, Niall, Alsing, Justin, Lanusse, François

论文摘要

在许多宇宙论问题中,可能性(观察到的数据作为未知参数的函数的概率)是未知或棘手的。这需要近似和假设,这可能会导致宇宙学参数的不正确推断,包括暗物质和暗能量的性质,或产生人工模型张力。无似然推理涵盖了一种新的方法家族,可以使用模拟数据的正向建模来严格估计参数的后验分布。我们使用弱透镜图摘要统计数据的神经数据压缩,使用黑暗能量调查(DES)SV数据中的弱透镜图(DES)数据提出无可能的宇宙学参数推断。我们使用深卷积神经网络探索了镜头质量图的功率谱,峰值计数和神经压缩摘要的组合。我们演示了数据建模和概率密度估计步骤验证推理过程的方法。无似然推理为严格的大规模宇宙学推断提供了与星系调查数据(对于DES,Euclid和LSST)的强大替代方法。我们已经公开提供了模拟的镜头地图。

In many cosmological inference problems, the likelihood (the probability of the observed data as a function of the unknown parameters) is unknown or intractable. This necessitates approximations and assumptions, which can lead to incorrect inference of cosmological parameters, including the nature of dark matter and dark energy, or create artificial model tensions. Likelihood-free inference covers a novel family of methods to rigorously estimate posterior distributions of parameters using forward modelling of mock data. We present likelihood-free cosmological parameter inference using weak lensing maps from the Dark Energy Survey (DES) SV data, using neural data compression of weak lensing map summary statistics. We explore combinations of the power spectra, peak counts, and neural compressed summaries of the lensing mass map using deep convolution neural networks. We demonstrate methods to validate the inference process, for both the data modelling and the probability density estimation steps. Likelihood-free inference provides a robust and scalable alternative for rigorous large-scale cosmological inference with galaxy survey data (for DES, Euclid and LSST). We have made our simulated lensing maps publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源