论文标题

无视无监督的立体声通讯学习的视差关注

Parallax Attention for Unsupervised Stereo Correspondence Learning

论文作者

Wang, Longguang, Guo, Yulan, Wang, Yingqian, Liang, Zhengfa, Lin, Zaiping, Yang, Jungang, An, Wei

论文摘要

立体声图像对将3D场景提示编码为左图和右图像之间的立体声对应关系。为了利用立体声图像中的3D提示,最新的基于CNN的方法通常使用成本量技术来捕获巨大差异的立体声通信。但是,由于具有不同基准,焦距和分辨率的立体声摄像机的差异可能会有很大差异,因此成本量技术中使用的固定最大差异阻碍了它们处理具有较大差异变化的不同立体声图像对。在本文中,我们提出了一种通用视差注意机制(PAM),以捕获立体声对应关系,而不管差异的变化如何。我们的PAM将表现约束与注意机制相结合,以计算沿阴极线的特征相似性,以捕获立体声对应关系。基于我们的PAM,我们提出了一个视差注意立体匹配网络(PASMNET)和视差注意立体图像超级分辨率网络(Passrnet),用于立体声匹配和立体图像超级分辨率任务。此外,我们推出了一个名为Flickr1024的新的大规模数据集,用于立体声图像超级分辨率。实验结果表明,我们的PAM是通用的,可以在较大的差异变化下以无监督的方式有效地学习立体声对应。比较结果表明,我们的pasmnet和Passrnet实现了最新的性能。

Stereo image pairs encode 3D scene cues into stereo correspondences between the left and right images. To exploit 3D cues within stereo images, recent CNN based methods commonly use cost volume techniques to capture stereo correspondence over large disparities. However, since disparities can vary significantly for stereo cameras with different baselines, focal lengths and resolutions, the fixed maximum disparity used in cost volume techniques hinders them to handle different stereo image pairs with large disparity variations. In this paper, we propose a generic parallax-attention mechanism (PAM) to capture stereo correspondence regardless of disparity variations. Our PAM integrates epipolar constraints with attention mechanism to calculate feature similarities along the epipolar line to capture stereo correspondence. Based on our PAM, we propose a parallax-attention stereo matching network (PASMnet) and a parallax-attention stereo image super-resolution network (PASSRnet) for stereo matching and stereo image super-resolution tasks. Moreover, we introduce a new and large-scale dataset named Flickr1024 for stereo image super-resolution. Experimental results show that our PAM is generic and can effectively learn stereo correspondence under large disparity variations in an unsupervised manner. Comparative results show that our PASMnet and PASSRnet achieve the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源