论文标题
用于发现双金属催化剂的高通量计算实验筛选协议
High-Throughput Computational-Experimental Screening Protocol for the Discovery of Bimetallic Catalysts
论文作者
论文摘要
在数十年的催化研究中,将D波段中心和吸附物结合能相关的D波段中心理论成功地使新型催化剂材料的发现加速了。最近的研究表明,除了D波段中心值之外,对D波段形状的完整考虑描述了D波段的较高矩以及SP波段性能以及SP波段性能可以帮助更好地捕获表面反应性。然而,在合并的计算实验研究中,从未将状态密度(DOS)模式本身用作描述符。在这里,我们将完整的DOS模式作为高通量筛选协议中的关键描述符,并证明其有效性。对于我们的演示催化反应,对于过氧化氢(H2O2)的合成,本研究的重点是发现可以取代原型钯(PD)的双金属催化剂。通过基于DOS模式相似性(使用第一原理计算评估)和合成可行性的一系列筛选过程,最终提出了9个候选物,该候选者是在4,350个双金合金中提出的,然后预计该候选者的催化性能与PD相当。随后的实验测试表明,4种双金属催化剂(Ni61pt39,Au51pd49,PT52PD48,PD52NI48)确实表现出与PD相当的催化性。此外,我们发现了一种新型的双金属(NI-PT)催化剂,尚未报道H2O2直接合成。特别是,NI61PT39的表现要优于化学反应的典型PD催化剂,并且在成本范围化的生产率方面表现出9.5倍的增强。该协议为催化剂发现提供了新的机会,以替换或减少铂类金属的使用。
For decades of catalysis research, the d-band center theory that correlates the d-band center and the adsorbate binding energy has successfully enabled the accelerated discovery of novel catalyst materials. Recent studies indicate that, on top of the d-band center value, the full consideration of the d-band shapes describing higher moments of the d-band as well as sp-band properties can help better capturing surface reactivity. However, the density-of-states (DOS) patterns themselves have never been used as a descriptor in combined computational-experimental studies. Here, we propose the full DOS patterns as a key descriptor in high-throughput screening protocols, and prove its effectiveness. For the hydrogen peroxide (H2O2) synthesis as our demo catalytic reaction, the present study focuses on discovering bimetallic catalysts that can replace the prototypic palladium (Pd) one. Through a series of screening processes based on DOS pattern similarities (evaluated using first-principles calculations) and synthetic feasibility, 9 candidates are finally proposed out of 4,350 bimetallic alloy, which then are expected to have a catalytic performance comparable to that of Pd. The subsequent experimental tests demonstrate that 4 bimetallic catalysts (Ni61Pt39, Au51Pd49, Pt52Pd48, Pd52Ni48) indeed exhibit the catalytic properties comparable to those of Pd. Moreover, we discovered a novel bimetallic (Ni-Pt) catalyst, which has not yet been reported for H2O2 direct synthesis. In particular, Ni61Pt39 outperforms the prototypical Pd catalyst for the chemical reaction and exhibits a 9.5-fold enhancement in cost-normalized productivity. This protocol provides a new opportunity for the catalyst discovery for the replacement or reduction in use of the platinum-group metals.