论文标题

刺穿的对数图

Punctured logarithmic maps

论文作者

Abramovich, Dan, Chen, Qile, Gross, Mark, Siebert, Bernd

论文摘要

我们介绍了稳定的对数图的一种变体,我们称之为刺穿的对数图。它们允许扩展对数格罗莫夫(Gromov-Witten)理论,其中标记的点与边界除数具有负相切的顺序。 作为主要应用,我们开发了一种胶合形式主义,该形式主义重建稳定的对数图及其虚拟周期而没有目标的扩展,而热带几何形状提供了基本的组合。 刺穿的gromov-witten不变性在Arxiv:1909.07649中的最后两位作者在镜子合作伙伴的固有构造中也起着关键作用,该构想与符号共同体学和对数的linear guaug linear sigma模型在即将到来的第二作者中的线性sigma模型中,与felix Janda和Yongbin ruan ruan ruan ruan ruan ruan ruan ruan ruan ruan。

We introduce a variant of stable logarithmic maps, which we call punctured logarithmic maps. They allow an extension of logarithmic Gromov-Witten theory in which marked points have a negative order of tangency with boundary divisors. As a main application we develop a gluing formalism which reconstructs stable logarithmic maps and their virtual cycles without expansions of the target, with tropical geometry providing the underlying combinatorics. Punctured Gromov-Witten invariants also play a pivotal role in the intrinsic construction of mirror partners by the last two authors in arXiv:1909.07649, conjecturally relating to symplectic cohomology, and in the logarithmic gauged linear sigma model in upcoming work of the second author with Felix Janda and Yongbin Ruan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源