论文标题

在$ k_4 $的模块化曲线

On the $K_4$ group of modular curves

论文作者

Brunault, François

论文摘要

我们使用Goncharov和de Jeu定义的重量3的pologogarithmic复合物在组$ k_4 $的模块化曲线中构建元素。该构造在该级别上是统一的,并使用新的模块化单元作为Weierstrass $ \ wp $函数的划分值的交叉比例。这些单元提供了$ k_2 $模块化曲线的$ 3 $ - 期关系的明确三角剖分,从而导致$ k_4 $中的元素。基于数值计算和W. Wang的最新结果,我们猜想这些元素与使用Eisenstein符号定义的贝林森元素成正比。

We construct elements in the group $K_4$ of modular curves using the polylogarithmic complexes of weight 3 defined by Goncharov and De Jeu. The construction is uniform in the level and uses new modular units obtained as cross-ratios of division values of the Weierstrass $\wp$ function. These units provide explicit triangulations of the $3$-term relations in $K_2$ of modular curves, which in turn give rise to elements in $K_4$. Based on numerical computations and on recent results of W. Wang, we conjecture that these elements are proportional to the Beilinson elements defined using the Eisenstein symbol.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源