论文标题

熵函数,变异原理和平衡状态的凸分析方法

A convex analysis approach to entropy functions, variational principles and equilibrium states

论文作者

Bis, Andrzej, Carvalho, Maria, Mendes, Miguel, Varandas, Paulo

论文摘要

这项工作的第一个目的是认可有限添加的集合功能作为平衡状态的出现,并有可能通过与一般变异原理相关的上半连续图替换度量熵的可能性。 More precisely, using methods from Convex Analysis, we construct for each generalized convex pressure function an upper semi-continuous entropy-like map (which, in the context of continuous transformations acting on a compact metric space and the topological pressure, turns out to be the upper semi-continuous envelope of the Kolmogorov-Sinai metric entropy), then establish a new abstract variational principle and prove that equilibrium states, possibly有限的加性,始终存在。这种概念方法为动态系统提供了新的见解,而无需用最大熵进行测量,促使研究有限加性的基础状态,用于非均匀的双曲线图,并授予存在有限加性的lyapunov平衡状态的单数值电位,该态度是由线性共偶有在连续映射上产生的。我们进一步研究了几种应用,包括针对有限生成的半群或可计数的SOFIC组动作驱动的系统的新型热力学形式主义。在手稿的最后页面上,我们在主要结果建议的广泛主题中提供了一个开放问题的清单。

The first aims of this work are to endorse the advent of finitely additive set functions as equilibrium states and the possibility to replace the metric entropy by an upper semi-continuous map associated to a general variational principle. More precisely, using methods from Convex Analysis, we construct for each generalized convex pressure function an upper semi-continuous entropy-like map (which, in the context of continuous transformations acting on a compact metric space and the topological pressure, turns out to be the upper semi-continuous envelope of the Kolmogorov-Sinai metric entropy), then establish a new abstract variational principle and prove that equilibrium states, possibly finitely additive, always exist. This conceptual approach provides a new insight on dynamical systems without a measure with maximal entropy, prompts the study of finitely additive ground states for non-uniformly hyperbolic maps and grants the existence of finitely additive Lyapunov equilibrium states for singular value potentials generated by linear cocycles over continuous maps. We further investigate several applications, including a new thermodynamic formalism for systems driven by finitely generated semigroup or countable sofic group actions. On the final pages of the manuscript we provide a list of open problems in a wide range of topics suggested by our main results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源