论文标题

增强激光驱动的质子加速度,具有气翼靶

Enhanced laser-driven proton acceleration with gas-foil targets

论文作者

Levy, Dan, Davoine, Xavier, Debayle, Arnaud, Gremillet, Laurent, Malka, Victor

论文摘要

我们从数值上研究由超明秒激光脉冲驱动的气体翼靶中质子加速度的机制。该目标由几十微米的近临界密度氢气层组成,该氢气层连接到固体碳箔上,其背面具有污染物的薄质子层。二维粒子中的粒子模拟表明,在最佳气体密度下,与单个箔目标相比,污染物质子的最大能量增加了$ \ sim 4 $。这种改进源于近乎完整的激光吸收到气体中的相对论电子。确定了几个能量电子种群,并通过计算它们在质子位置产生的静电场来量化它们对质子加速度的各自影响。尽管发现这些电子基团中的每一个都对整体加速磁场产生了重大贡献,但主要的是相对论的热体积,该热量是由于Debayle等人最近对气体激发的非线性Wakefield产生的。 [New J. Phys。 19,123013(2017)]。我们的分析还揭示了相邻离子在最快质子加速度的重要作用,以及由质子层的时间增加曲率引起的多维效应的发作。

We study numerically the mechanisms of proton acceleration in gas-foil targets driven by an ultraintense femtosecond laser pulse. The target consists of a near-critical-density hydrogen gas layer of a few tens of microns attached to a solid carbon foil with a contaminant thin proton layer at its back side. Two-dimensional particle-in-cell simulations show that, at optimal gas density, the maximum energy of the contaminant protons is increased by a factor of $\sim 4$ compared to a single foil target. This improvement originates from the near-complete laser absorption into relativistic electrons in the gas. Several energetic electron populations are identified, and their respective effect on the proton acceleration is quantified by computing the electrostatic fields that they generate at the protons' positions. While each of those electron groups is found to contribute substantially to the overall accelerating field, the dominant one is the relativistic thermal bulk that results from the nonlinear wakefield excited in the gas, as analyzed recently by Debayle et al. [New J. Phys. 19, 123013 (2017)]. Our analysis also reveals the important role of the neighboring ions in the acceleration of the fastest protons, and the onset of multidimensional effects caused by the time-increasing curvature of the proton layer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源