论文标题
加速带有深度学习的贝叶斯微震动事件位置
Accelerating Bayesian microseismic event location with deep learning
论文作者
论文摘要
我们提出了一系列新的开源深度学习算法,以加速贝叶斯全波形点源的微观事件。推断矩张量成分和源位置的关节后概率分布是严格的不确定性定量的关键。但是,推理过程需要针对采样算法探索的每组参数的微震迹痕迹的正向建模,这使得推理在计算上非常密集。在本文中,我们将重点介绍通过训练深度学习模型以了解给定的3D异质速度模型的源位置和地震痕迹之间的映射,以及来源的固定各向同性力矩张量。这些训练有素的模拟器在推理过程中取代了弹性波方程的昂贵解。我们将我们的结果与先前的研究进行了比较,该研究使用基于高斯过程的模拟器来颠倒微问题事件。我们表明,与基于高斯流程的方法相比,所有模型都提供了更准确的预测和$ \ sim 100 $ $ $ $倍的预测,以及$ \ Mathcal {o}(10^5)$加速因子比波形生成的伪谱法。例如,可以在公共笔记本电脑处理器上使用$ \ sim 10 $ ms生成2-S长的合成跟踪,而不是使用伪频谱方法在高调图形处理单元卡上使用伪谱法。我们还表明,我们的推论结果与基于旅行时间估计的传统位置方法获得的推论结果非常吻合。我们的开源深度学习模型的速度,准确性和可扩展性为这些模拟器扩展到通用源机制的扩展铺平了道路,并应用了使用完整波形的米矩张量组件和源位置的关节贝叶斯反转。
We present a series of new open source deep learning algorithms to accelerate Bayesian full waveform point source inversion of microseismic events. Inferring the joint posterior probability distribution of moment tensor components and source location is key for rigorous uncertainty quantification. However, the inference process requires forward modelling of microseismic traces for each set of parameters explored by the sampling algorithm, which makes the inference very computationally intensive. In this paper we focus on accelerating this process by training deep learning models to learn the mapping between source location and seismic traces, for a given 3D heterogeneous velocity model, and a fixed isotropic moment tensor for the sources. These trained emulators replace the expensive solution of the elastic wave equation in the inference process. We compare our results with a previous study that used emulators based on Gaussian Processes to invert microseismic events. We show that all of our models provide more accurate predictions and $\sim 100$ times faster predictions than the method based on Gaussian Processes, and a $\mathcal{O}(10^5)$ speed-up factor over a pseudo-spectral method for waveform generation. For example, a 2-s long synthetic trace can be generated in $\sim 10$ ms on a common laptop processor, instead of $\sim$ 1 hr using a pseudo-spectral method on a high-profile Graphics Processing Units card. We also show that our inference results are in excellent agreement with those obtained from traditional location methods based on travel time estimates. The speed, accuracy and scalability of our open source deep learning models pave the way for extensions of these emulators to generic source mechanisms and application to joint Bayesian inversion of moment tensor components and source location using full waveforms.