论文标题

具有主动和被动运输模型中的随机图灵模式形成

Stochastic Turing pattern formation in a model with active and passive transport

论文作者

Kim, Hyunjoong, Bressloff, Paul C.

论文摘要

我们研究了在反应扩散对流(RDA)方程的随机和空间离散版本中的Turing模式形成,该方程先前是在\ textIt {c中引入的突触发生的。秀丽隐杆}。该模型描述了一个被动扩散的分子物种与逆向物种之间的相互作用,该物种在行进和逆行运动驱动转运(双向转运)之间切换。在突触发生的背景下,可以用蛋白激酶CAMKII和趋势分子作为谷氨酸受体来鉴定扩散的分子。随机动力学根据RDA主方程而演变,其中对流和扩散都被建模为沿一维化学室的跳动反应。进行RDA主方程的线性噪声近似导致有效的Langevin方程,其功率谱提供了一种扩展Turing Turing不稳定性对随机系统的定义的方法,即,就非零空间频率处的功率谱中的峰值存在而言。因此,我们展示了噪声如何显着扩展发生自发模式的范围,这与先前对RD系统的研究一致。

We investigate Turing pattern formation in a stochastic and spatially discretized version of a reaction diffusion advection (RDA) equation, which was previously introduced to model synaptogenesis in \textit{C. elegans}. The model describes the interactions between a passively diffusing molecular species and an advecting species that switches between anterograde and retrograde motor-driven transport (bidirectional transport). Within the context of synaptogenesis, the diffusing molecules can be identified with the protein kinase CaMKII and the advecting molecules as glutamate receptors. The stochastic dynamics evolves according to an RDA master equation, in which advection and diffusion are both modeled as hopping reactions along a one-dimensional array of chemical compartments. Carrying out a linear noise approximation of the RDA master equation leads to an effective Langevin equation, whose power spectrum provides a means of extending the definition of a Turing instability to stochastic systems, namely, in terms of the existence of a peak in the power spectrum at a non-zero spatial frequency. We thus show how noise can significantly extend the range over which spontaneous patterns occur, which is consistent with previous studies of RD systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源