论文标题
自回归变压器神经网络,用于通过概率配方模拟开放量子系统
Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation
论文作者
论文摘要
开放量子系统的理论为量子科学和工程学现代研究的大部分部分奠定了基础。植根于其扩展的希尔伯特空间的维度,模拟开放量子系统的高计算复杂性要求开发策略以近似其动态。在本文中,我们提出了一种解决开放量子系统动力学的方法。使用基于正操作员值度量(POVM)的量子物理学的确切概率表述,我们将具有自回归变压器神经网络的量子状态紧凑;由于有效的精确采样和可拖动密度,此类网络带来了明显的算法灵活性。我们进一步介绍了字符串状态的概念,以部分恢复自回归变压器神经网络的对称性并改善局部相关性的描述。已经开发了有效的算法,以使用前回向的梯形方法模拟Liouvillian超级操作器的动力学,并通过变分公式找到稳态。我们的方法是在原型一维系统和二维系统上进行基准测试的,发现基于使用Markov Chain Monte Carlo来样本限制的Boltzmann机器的替代方法,这些结果与替代方法相比紧密跟踪精确的解决方案并获得更高的精度。我们的工作提供了在各种情况下理解量子动态的一般方法,以及在经典设置中求解高维概率微分方程的技术。
The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups.