论文标题

ERDS问题的计数版本

The counting version of a problem of Erdős

论文作者

Pach, Péter Pál, Palincza, Richárd

论文摘要

一组$ a $的自然数字拥有属性$ \ mathcal {p} _h $,如果没有不同的元素$ a_0,a_1,\ dots,a_h \ in a $ a_0 $,将产品$ a_1a_2 \ dots a_h dots a_h a_h $。 ERDS确定了$ \ {1,\ ldots,n \} $具有属性$ \ Mathcal {p} _2 $的最大大小。最近,Chan,Győri和Sárközy解决了该案例$ H = 3 $,最后也通过Chan解决了总体情况,最大尺寸为$π(n)+θ_H(\ frac {n^{2/(h+1)}}}}}}} {(\ log n)^2}^{2}}}}}}}} {(\ log n)^}}}})$。 在此注释中,我们考虑了此问题的计数版本,并表明$ \ {1,\ ldots,n \} $具有属性$ \ MATHCAL {p} _H $是$ t(n)\ cdot e^{θ(n) (3.517 \ dots)^{π(n)} $。对于$ h> 2 $,我们证明拥有属性$ \ Mathcal {p} _h $的子集数为$ t(n)\ cdot e^{\ sqrt {n}(1+o(1+o(1))} $。 这是一个罕见的例子,其中还确定了指数中低阶项的数量级。

A set $A$ of natural numbers possesses property $\mathcal{P}_h$, if there are no distinct elements $a_0,a_1,\dots ,a_h\in A$ with $a_0$ dividing the product $a_1a_2\dots a_h$. Erdős determined the maximum size of a subset of $\{1,\ldots, n\}$ possessing property $\mathcal{P}_2$. More recently, Chan, Győri and Sárközy solved the case $h=3$, finally the general case also got resolved by Chan, the maximum size is $π(n)+Θ_h(\frac{n^{2/(h+1)}}{(\log n)^{2}})$. In this note we consider the counting version of this problem and show that the number of subsets of $\{1,\ldots, n\}$ possessing property $\mathcal{P}_h$ is $T(n)\cdot e^{Θ(n^{2/3}/\log n)}$ for a certain function $T(n)\approx (3.517\dots)^{π(n)}$. For $h>2$ we prove that the number of subsets possessing property $\mathcal{P}_h$ is $T(n)\cdot e^{\sqrt{n}(1+o(1))}$. This is a rare example in which the order of magnitude of the lower order term in the exponent is also determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源