论文标题

对角线和一个 - 含量张量产品

Diagonals and A-infinity Tensor Products

论文作者

Lipshitz, Robert, Ozsváth, Peter, Thurston, Dylan

论文摘要

扩展Saneblidze-bumble等人的工作,我们使用对角线对斜体和多额外的人来定义一个含有代数的代数,模块,代数同构和模块形态的张量产品双面张量产品。然后,我们给出了一个代数的1参数变形的类似定义;这涉及另一个复合物的集合。这些结构与接壤的Heegaard浮子同源性有关。

Extending work of Saneblidze-Umble and others, we use diagonals for the associahedron and multiplihedron to define tensor products of A-infinity algebras, modules, algebra homomorphisms, and module morphisms, as well as to define a bimodule analogue of twisted complexes (type DD structures, in the language of bordered Heegaard Floer homology) and their one- and two-sided tensor products. We then give analogous definitions for 1-parameter deformations of A-infinity algebras; this involves another collection of complexes. These constructions are relevant to bordered Heegaard Floer homology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源